If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+12w+3=0
a = 1; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·1·3
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{33}}{2*1}=\frac{-12-2\sqrt{33}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{33}}{2*1}=\frac{-12+2\sqrt{33}}{2} $
| 2.596x-40=10+4(1.5+0.5x) | | 4x-5(x-7)=29 | | 8x+6(x-2)=4-3x | | 3+5d=18 | | 2x^2+32x-117=0 | | (3x+5)-4=27 | | 3^2x+1=5 | | Y-0.5=-10x+30 | | 5x+3=2-6x | | (3x/5)-(x/4)=10 | | 2^2x+1=5 | | x/0.54=0.6/0.8 | | 2w-1=3w | | 125/20=300/x | | (x-3/5)+2=(x-6) | | 3x+1=×+7 | | y=9.4(10)+1 | | y=9.4(45)+1 | | 3x-3x=46-4 | | 450+x=625.35 | | -6(h+9)=-3(h+3) | | (x^2)+14=9 | | 3x+4=3(x+5)-11 | | (1+x)^12=1.045 | | 2(x+3)+(5x)=3x+14 | | 8^x+2-8^x=126 | | 3z=1.9+2.6 | | 2-5x=+7-11x | | y=5(-1/4+6) | | 7m-21=42m= | | 3^(x-5)=121(2^x) | | 20-8y+y=0 |